Objectives Learn to find complex eigenvalues and eigenvectors of a matrix. Learn to recognize a rotation-scaling matrix, and compute by how much the matrix rotates and scales. Understand the geometry of 2 × 2 and 3 × 3 matrices with a complex eigenvalue.If the eigenvalues are complex, then the eigenvectors are complex too. Let's say the eigenvalues are purely imaginary, so that the trajectory is an ellipse. ... =\bar{\lambda}\bar{X}$. You can convince yourself that a general solution to $\dot{Y}=MY$ in 2D is $$ Y(t)=Re\left\{a\exp(\lambda t) X\right\},\,a\in\mathbb{C}. $$ In general, in …Complex Eigenvalue Case - 1 Complex Eigenvalue Case First-order homogeneous systems have the standard form: ~x0= A~x What happens when the coe cient matrix Ahas non-real eigenval-ues? (Note: for the remainder of the course, we will use the more tradi-tional \i" instead of p 1; it will simplify some of the notation.) Proposition.If the real ...May 19, 2015 · I am trying to figure out the general solution to the following matrix: $ \\frac{d\\mathbf{Y}}{dt} = \\begin{pmatrix} -3 & -5 \\\\ 3 & 1 \\end{pmatrix ... x2 = e−t 1 0 − cos(2t) cos(2t) − i sin(2t) = e−t . −2 2 −2 cos(2t) + 2 sin(2t) These are two distinct real solutions to the system. In general, if the complex eigenvalue is a + bi, to get the real solutions to the system, we write the corresponding complex eigenvector v in terms of its real and imaginary part:Complex Eigenvalues. Since the eigenvalues of A are the roots of an nth degree polynomial, some eigenvalues may be complex. If this is the case, the solution x(t)=ue^λt is complex-valued. We now ...Several studies have attempted to implement classical quantum algorithms to solve general eigenvalue problems. For example, quantum solution methods have been proposed to solve the wave equation [1], boundary-value problems [2], and linear initial-value differential equations [3]. In addition, a quantum phase estimation (QPE) method …In general, For the general equation x0 = Ax; (6) suppose that A has a pair of complex conjugate eigenvalues, r 1 = + i r 2 = i (7) Then the corresponding eigenvectors ˘(1) and ˘(2) are also complex conjugates. The corresponding solutions are MATH 351 (Di erential Equations) Sec. 7.6 April 20, 2014 18 / 265.2.2 (Complex eigenvalues) This exercise leads you through the solution of a linear system where the eigenvalues are complex. The system is *=x-y y=x+y. a) Find A and show that it has eigenvalues 1, = 1+i, 12 = 1 – i, with eigenvec- tors v, = (i,1), v2 = (-4,1). (Note that the eigenvalues are complex conjugates, and so are the eigenvectors ...the eigenvalues are distinct. However, even in this simple case we can have complex eigenvalues with complex eigenvectors. The goal here is to show that we still can choose a basis for the vector space of solutions such that all the vectors in it are real. Proposition 1. If y(t) is a solution to (1) then Rey(t) and Imy(t) are also solutions to ... That is, eigenvalues and eigenvectors can be real or complex, and that for certain defective matrices, there may be less than \(n\) distinct eigenvalues and eigenvectors. If \(\lambda_{1}\) is an eigenvalue of our 2-by-2 matrix \(A\) , then the corresponding eigenvector \(\mathrm{x}_{1}\) may be found by solvingMatrix solution for complex eigenvalues. So I have the next matrix: [ 1 − 4 2 5] for which I have to find the general solution of the system X ′ = A X in each of the following situations. Also, find a fundamental matrix solution and, finally, find e t A, the principal matrix solution. I have managed to determine the eigenvalues: λ 1 = 3 ...The general solution is x(t) = C 1u(t) + C 2w(t). The phase portrait will have ellipses, that are spiraling inward if a < 0; spiraling outward if a > 0; stable if a = 0. M. Macauley (Clemson) Lecture 4.6: Phase portraits, complex eigenvalues Di erential Equations 6 / …Managing a fleet of vehicles can be a complex task, requiring careful coordination and organization. Fortunately, fleet management software solutions like Samsara have emerged to streamline this process and improve operational efficiency.However if the eigenvalues are complex, it is less obvious how to ﬁnd the real solutions. Because we are interested in a real solution, we need a strategy to untangle this. We examine the case where A has complex eigenvalues λ1 = λ and λ2 = ¯λ with corresponding complex eigenvectors W1 = W and W2 = W . Eigenvalues and Eigenvectors Diagonalization Introduction Next week, we will apply linear algebra to solving di erential equations. One that is particularly easy to solve is y0= ay: It has the solution y= ceat, where cis any real (or complex) number. Viewed in terms of linear transformations, y= ceat is the solution to the vector equation T(y ...is a solution. (Note that x and z are vectors.) In this discussion we will consider the case where r r is a complex number. r = l + mi. (5.3.3) (5.3.3) r = l + m i. First we know that if r …$\begingroup$ @user1038665 Yes, since the complex eigenvalues will come in a conjugate pair, as will the eigenvector , the general solution will be real valued. See here for an example. $\endgroup$ – DarylIn this section we will learn how to solve linear homogeneous constant coefficient systems of ODEs by the eigenvalue method. Suppose we have such a system. x → ′ = P x →, 🔗. where P is a constant square matrix. We wish to adapt the method for the single constant coefficient equation by trying the function . e λ t. However, x → is a ...2, and saw that the general solution is: x = C 1e 1tv 1 + C 2e 2tv 2 For today, let’s start by looking at the eigenvalue/eigenvector compu-tations themselves in an example. For the matrix Abelow, compute the eigenvalues and eigenvectors: A= 3 2 1 1 SOLUTION: You don’t necessarily need to write the rst system to the left, Jan 8, 2017 · Complex Eigenvalues. In our 2×2 systems thus far, the eigenvalues and eigenvectors have always been real. However, it is entirely possible for the eigenvalues of a 2×2 matrix to be complex and for the eigenvectors to have complex entries. As long as the eigenvalues are distinct, we will still have a general solution of the form given above in ... Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteK 2 = [ 2 3] We can make the general solution now, it’s e to the power of the eigenvalue, then multiplied by the eigenvector we found. We could’ve used this method if we had 3 ODEs to solve simultaneously. x ( t) = c 1 e – t [ – 1 1] + c 2 e 4 t [ 2 3] You can now use the initial condition, x ( 0) = [ 0 – 4], to solve for the constants.When the matrix A of a system of linear differential equations ˙x = Ax has complex eigenvalues the most convenient way to represent the real solutions is to use complex vectors. A complex vector is a column vector v = [v1 ⋮ vn] whose entries vk are complex numbers. Every complex vector can be written as v = a + ib where a and b are real vectors. Eigenvalue/Eigenvector analysis is useful for a wide variety of differential equations. This page describes how it can be used in the study of vibration problems for a simple lumped parameter systems by considering a very simple system in detail. ... The general solution is . ... the quantities c 1 and c 2 must be complex conjugates of each ...The general case is very similar to this example. Indeed, assume that a system has 0 and as eigenvalues. Hence if is an eigenvector associated to 0 and an eigenvector associated to , then the general solution is . We have two cases, whether or . If , then is an equilibrium point. If , then the solution is a line parallel to the vector . ...Therefore, in order to solve \(\eqref{eq:eq1}\) we first find the eigenvalues and eigenvectors of the matrix \(A\) and then we can form solutions using \(\eqref{eq:eq2}\). There are going to be three cases that we’ll need to look at. The cases are real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.Complex Eigenvalues. In our 2×2 systems thus far, the eigenvalues and eigenvectors have always been real. However, it is entirely possible for the eigenvalues of a 2×2 matrix to be complex and for the eigenvectors to have complex entries. As long as the eigenvalues are distinct, we will still have a general solution of the form given above in ...Free online inverse eigenvalue calculator computes the inverse of a 2x2, 3x3 or higher-order square matrix. See step-by-step methods used in computing eigenvectors, inverses, diagonalization and many other aspects of matricesOverview Complex Eigenvalues An Example Systems of Linear Differential Equations with Constant Coefﬁcients and Complex Eigenvalues 1. These systems are typically written in matrix form as ~y0 =A~y, where A is an n×n matrix and~y is a column vector with n rows. 2. The theory guarantees that there will always be a set of n linearly independent ... The matrices in the following systems have complex eigenvalues; use Theorem 2 to find the general (real-valued) solution; if initial conditions are given, find the particular solution satisfying them 4 -3 (a) x' = (b) x'=11-5 (c) x'=10-1-6|x; (d) x'=|-200| x, x(0)=12 3 0 3 5 Theorem 2. If A is an (n×n)-matrix of real constants that has a ...two linearly independent solutions to the system (2). In the 2 × 2 case, this only occurs when A is a scalar matrix that is, when A = λ 1 I. In this case, A − λ 1 I = 0, and every vector is an eigenvector. It is easy to ﬁnd two independent solutions; the usual choices are 1 0 eλ 1t and eλ 1t. 0 1 So the general solution is c λ 1t 1 λ ...Solution. Objectives. Learn to find complex eigenvalues and eigenvectors of a matrix. Learn to recognize a rotation-scaling matrix, and compute by how much the …• Shapes of solutions for complex eigenvalues case. Friday, February 20, 2015 Calculating eigenvalues - trace/det shortcut • For the general matrix • find ... Today • General solution for complex eigenvalues case. • Shapes of solutions for complex eigenvalues case. Friday, February 20, 2015 . Post on 25-Jan-2022. 0 views. Category:Complex eigenvalues of matrices with real entries come as conjugate pairs. This is not necessarily the case for matrices with complex entries. Share. Cite. Follow edited Aug 10, 2020 at 14:27. answered Aug 10, 2020 at 14:25. J. …Complex Eigenvalues. Since the eigenvalues of A are the roots of an nth degree polynomial, some eigenvalues may be complex. If this is the case, the solution x(t)=ue^λt is complex-valued. We now ...Jordan form can be viewed as a generalization of the square diagonal matrix. The so-called Jordan blocks corresponding to the eigenvalues of the original matrix are placed on its diagonal. The eigenvalues can be equal in different blocks. Jordan matrix structure might look like this: The eigenvalues themselves are on the main diagonal. Have you ever come across a word that left you scratching your head, wondering how on earth it is pronounced? Don’t worry, you’re not alone. Many people struggle with pronouncing complex vocabulary, especially when encountering unfamiliar t...Objectives Learn to find complex eigenvalues and eigenvectors of a matrix. Learn to recognize a rotation-scaling matrix, and compute by how much the matrix rotates and …Instead of the roots s1 and s2, that matrix will have eigenvalues 1 and 2. Those eigenvalues are the roots of an equation A 2 CB CC D0, just like s1 and s2. We will see the same six possibilities for the ’s, and the same six pictures. The eigenvalues of the 2 by 2 matrix give the growth rates or decay rates, in place of s1 and s2. y0 1 y0 2 D ...However if the eigenvalues are complex, it is less obvious how to ﬁnd the real solutions. Because we are interested in a real solution, we need a strategy to untangle this. We examine the case where A has complex eigenvalues λ1 = λ and λ2 = ¯λ with corresponding complex eigenvectors W1 = W and W2 = W . Jun 16, 2022 · We are now stuck, we get no other solutions from standard eigenvectors. But we need two linearly independent solutions to find the general solution of the equation. In this case, let us try (in the spirit of repeated roots of the characteristic equation for a single equation) another solution of the form (1) If λ ∈ C is an eigenvalue of A, show that its complex conjugate ¯λ is also an eigenvalue of A. (Hint: take the complex-conjugate of the eigen-equation.) Solution Let p(x) be the characteristic polynomial for A. Then p(λ) = 0. Take conjugate, we get p(λ) = 0. Since A is a real matrix, p is a polynomial of real coeﬃcient, which2, and saw that the general solution is: x = C 1e 1tv 1 + C 2e 2tv 2 For today, let’s start by looking at the eigenvalue/eigenvector compu-tations themselves in an example. For the matrix Abelow, compute the eigenvalues and eigenvectors: A= 3 2 1 1 SOLUTION: You don’t necessarily need to write the rst system to the left,The complex components in the solution to differential equations produce fixed regular cycles. Arbitrage reactions in economics and finance imply that these cycles cannot persist, so this kind of equation and its solution are not really relevant in economics and finance. Think of the equation as part of a larger system, and think of the ...Overview Complex Eigenvalues An Example Systems of Linear Differential Equations with Constant Coefﬁcients and Complex Eigenvalues 1. These systems are typically written in matrix form as ~y0 =A~y, where A is an n×n matrix and~y is a column vector with n rows. 2. The theory guarantees that there will always be a set of n linearly independent ... Eigenvector is the solution to the above system which can be written as. [x1 x2 x3] = t[− 2 1 1], t ∈ R. Part 2. A − λI = [2 − λ p 2 q − λ] The characteristic equation is given by. (2 − λ)(q − λ) − 2p = 0. The eigenvalues are given as - 1 and -3 and are solutions to the characteristic equation.Express the general solution of the given system of equations in terms of real-valued functions: $\mathbf{X... Stack Exchange Network Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.Solution of a system of linear first-order differential equations with complex-conjugate eigenvalues.Join me on Coursera: https://www.coursera.org/learn/diff...Complex numbers aren't that different from real numbers, after all. $\endgroup$ - Arthur. May 12, 2018 at 11:23 ... since the set of eigenvectors corresponding to a given eigenvalue form a subspace, there will be an infinite number of possible $(x, y)$ values. Share. ... How is the proton accounted for in the relativistic solution of the ...It looks like solutions will be spirals. So we shall proceed as have done before, by obtaining eigenvalues and eigenvector. But this time you will see that we will have complex eigenvalues and eigenvectors. Subsection 5.6.1 Complex numbers: To make this section self-contained, we recall some basic facts about complex numbers.Solution of a system of linear first-order differential equations with complex-conjugate eigenvalues.Join me on Coursera: https://www.coursera.org/learn/diff...Jan 28, 2019 · Solution of a system of linear first-order differential equations with complex-conjugate eigenvalues.Join me on Coursera: https://www.coursera.org/learn/diff... How to Hand Calculate Eigenvectors. The basic representation of the relationship between an eigenvector and its corresponding eigenvalue is given as Av = λv, where A is a matrix of m rows and m columns, λ is a scalar, and v is a vector of m columns. In this relation, true values of v are the eigenvectors, and true values of λ are the ...The eigenvalues thus are. with corresponding eigenvectors. This means that the dynamical system has the general solution. that is. These are all complex ...$\begingroup$ @potato, Using eigenvalues and eigenveters, find the general solution of the following coupled differential equations. x'=x+y and y'=-x+3y. I just got the matrix from those. That's the whole question. $\endgroup$For the eigenvalue problem, there are an infinite number of roots, and the choice of the two initial guesses for \(\lambda\) will then determine to which root the iteration will converge. For this simple problem, it is possible to write explicitly the equation \(F(\lambda)=0\). The general solution to Equation \ref{7.9} is given byManaging a fleet of vehicles can be a complex task, requiring careful coordination and organization. Fortunately, fleet management software solutions like Samsara have emerged to streamline this process and improve operational efficiency.Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteThe eigenvalues can be real or complex. Complex eigenvalues will have a real component and an imaginary component. If we want to also find the associated eigenvectors, ... The Jacobi method iterates through very many approximations until it converges on an accurate solution. In general, numerical routines solve systems of …University of British ColumbiaFinding of eigenvalues and eigenvectors. This calculator allows to find eigenvalues and eigenvectors using the Characteristic polynomial. Leave extra cells empty to enter non-square matrices. Use ↵ Enter, Space, ← ↑ ↓ →, Backspace, and Delete to navigate between cells, Ctrl ⌘ Cmd + C / Ctrl ⌘ Cmd + V to copy/paste matrices.Medicaid is a government-funded healthcare program that provides medical assistance to low-income individuals and families. However, understanding who is eligible for Medicaid can be a complex process due to the various criteria involved.Your matrix is actually similar to one of the form $\begin{bmatrix} 2&-3\\ 3&2 \end{bmatrix}$ with transition matrix $\begin{bmatrix} 2&3\\ 13&0 \end{bmatrix}$ given respectively by the eigenvalues' real and imaginary parts and the transition is given (in columns) by real and imaginary parts of the first eigenvector.COMPLEX EIGENVALUES. The Characteristic Equation always features polynomials which can have complex as well as real roots, then so can the eigenvalues & eigenvectors of matrices be complex as well as real. However, when complex eigenvalues are encountered, they always occur in conjugate pairs as long as their associated matrix has …By superposition, the general solution to the differential equation has the form . Find constants and such that . Graph the second component of this solution using the MATLAB plot command. Use pplane5 to compute a solution via the Keyboard input starting at and then use the y vs t command in pplane5 to graph this solution.Differential EquationsChapter 3.4Finding the general solution of a two-dimensional linear system of equations in the case of complex eigenvalues.scalar (perhaps a complex number) such that Av=λv has a solution v which is not the 0 vector. We call such a v an eigenvector of A corresponding to the eigenvalue λ. Note that Av=λv if and only if 0 = Av-λv = (A- λI)v, where I is the nxn identity matrix. Moreover, (A-λI)v=0 has a non-0 solution v if and only if det(A-λI)=0.In this section we will solve systems of two linear differential equations in which the eigenvalues are complex numbers. This will include illustrating how to get a solution that does not involve complex numbers that we usually are after in these cases.A General Solution for the Motion of the System. We can come up with a general form for the equations of motion for the two-mass system. The general solution is . Note that each frequency is used twice, because our solution was for the square of the frequency, which has two solutions (positive and negative).5.2.2 (Complex eigenvalues) This exercise leads you through the solution of a linear system where the eigenvalues are complex. The system is *=x-y y=x+y. a) Find A and show that it has eigenvalues 1, = 1+i, 12 = 1 – i, with eigenvec- tors v, = (i,1), v2 = (-4,1). (Note that the eigenvalues are complex conjugates, and so are the eigenvectors ... 5.4.2. Find the general solution of the system x0= 3 1 1 1 x. Solution: We ﬁrst compute the eigenvalues of A = 3 1 1 1 : det(A lI) = 3 l 1 1 1 l = l 2 4l+4 = (l 2)2 = 0. Then the only eigenvalue is l = 2, with multiplicity 2. We ﬁnd any associated eigenvec-tors: A 2I = 1 1 1 1 ˘ 1 1 0 0 , so the only eigenvector is v 1 = 1 1In today’s data-driven world, businesses and organizations are constantly faced with the challenge of presenting complex data in a way that is easily understandable to their target audience. One powerful tool that can help achieve this goal...A General Solution for the Motion of the System. We can come up with a general form for the equations of motion for the two-mass system. The general solution is . Note that each frequency is used twice, because our solution was for the square of the frequency, which has two solutions (positive and negative). Numerical Analysis/Power iteration examples. < Numerical Analysis. w:Power method is an eigenvalue algorithm which can be used to find the w:eigenvalue with the largest absolute value but in some exceptional cases, it may not numerically converge to the dominant eigenvalue and the dominant eigenvector. We should know …Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this site About Us Learn more about Stack Overflow the company, and our products.7.6. Complex Eigenvalues 1 Section 7.6. Complex Eigenvalues Note. In this section we consider the case ~x0 = A~x where the eigenvalues of A are non-repeating, but not necessarily real. We will assume that A is real. Theorem. If A is real and R1 is an eigenvalue of A where R1 = λ + iµ and ξ~(1) is the corresponding eigenvector then R2 = …Sep 17, 2022 · Solution. Objectives. Learn to find complex eigenvalues and eigenvectors of a matrix. Learn to recognize a rotation-scaling matrix, and compute by how much the matrix rotates and scales. Understand the geometry of 2 × 2. 2 × 2. and 3 × 3. 3 × 3. matrices with a complex eigenvalue. of the solution are u(t) = eλtx instead of un = λnx—exponentials instead of powers. The whole solution is u(t) = eAtu(0). For linear differential equations with a constant matrix A, …Finding the eigenvectors and eigenvalues, I found the eigenvalue of $-2$ to correspond to the eigenvector $ \begin{pmatrix} 1\\ 1 \end{pmatrix} $ I am confused about how to proceed to finding the final solution here.Eigenvalues and Eigenvectors 6.1 Introduction to Eigenvalues: Ax =λx 6.2 Diagonalizing a Matrix 6.3 Symmetric Positive Deﬁnite Matrices 6.4 Complex Numbers and Vectors and Matrices 6.5 Solving Linear Differential Equations Eigenvalues and eigenvectors have new information about a square matrix—deeper than its rank or its column space.[5] Method for nding Eigenvalues Now we need a general method to nd eigenvalues. The problem is to nd in the equation Ax = x. The approach is the same: (A I)x = 0: Now I know that (A I) is singular, and singular matrices have determi-nant 0! This is a key point in LA.4. To nd , I want to solve det(A I) = 0. Find an eigenvector V associated to the eigenvalue . Write down the eigenvector as Two linearly independent solutions are given by the formulas The general solution is where and are arbitrary numbers. Note that in this case, we have Example. Consider the harmonic oscillator Find the general solution using the system technique. Answer.Although we have outlined a procedure to find the general solution of \(\mathbf x' = A \mathbf x\) if \(A\) has complex eigenvalues, we have not shown that this method will work in all cases. We will do so in Section 3.6. Activity 3.4.2. Planar Systems with Complex Eigenvalues. Free online inverse eigenvalue calculator computes the inverse of a 2x2, 3x3 or higher-order square matrix. See step-by-step methods used in computing eigenvectors, inverses, diagonalization and many other aspects of matriceseigenvalue is the set of (nonzero) scalar multiples (by complex numbers) of ˘= 1+i 2 1 : The second set of eigenvectors can be found by repeating this process for the eigen-value 1 2i. Alternatively, since the matrix has real entries and complex conjugate eigenvalues, the eigenvectors for 1 2iare precisely the complex conjugates of the The general solution is x(t) = C 1u(t) + C 2w(t). The phase portrait will have ellipses, that are spiraling inward if a < 0; spiraling outward if a > 0; stable if a = 0. M. Macauley (Clemson) Lecture 4.6: Phase portraits, complex eigenvalues Di erential Equations 6 / …These solutions are linearly independent if n = 2. If n > 2, that portion of the general solution corresonding to the eigenvalues a ± bi will be c1x1 + c2x2. Note that, as for second-order ODE's, the complex conjugate eigenvalue a − bi gives up to sign the same two solutions x1 and x2.Therefore, in order to solve \(\eqref{eq:eq1}\) we first find the eigenvalues and eigenvectors of the matrix \(A\) and then we can form solutions using \(\eqref{eq:eq2}\). There are going to be three cases that we’ll need to look at. The cases are real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.How to Hand Calculate Eigenvalues. The basic equation representation of the relationship between an eigenvalue and its eigenvector is given as Av = λv where A is a matrix of m rows and m columns, λ is a scalar, and v is a vector of m columns. In this relation, true values of v are the eigenvectors, and true values of λ are the eigenvalues. . (with complex eigenvalues) The basic method for solvinThe general solution is ~Y(t) = C 1 1 1 e 2t+ C 2 1 t+ 0 e : Ph You'll get a detailed solution from a subject matter expert that helps you learn core concepts. See Answer See Answer See Answer done loading Question: 3.4.5 Exercises Solving Linear Systems with Complex Eigenvalues Find the general solution of each of the linear systems in Exercise Group 3.4.5.1-4. Many of our calculators provide detailed, Section 5.7 : Real Eigenvalues. It’s now time to start solving systems of differential equations. We’ve seen that solutions to the system, →x ′ = A→x x → ′ = A x →. will be of the form. →x = →η eλt x → = η → e λ t. where λ λ and →η η → are eigenvalues and eigenvectors of the matrix A A.of the solution are u(t) = eλtx instead of un = λnx—exponentials instead of powers. The whole solution is u(t) = eAtu(0). For linear differential equations with a constant matrix A, … Hotel management can be a complex and time-cons...

Continue Reading## Popular Topics

- Let’s work a couple of examples now to see how we actual...
- Divorce can be a challenging and emotionally draining proc...
- Finding of eigenvalues and eigenvectors. This calculator allows to f...
- Tour Start here for a quick overview of the site Help Center ...
- Given A ∈ Cn×n A ∈ C n × n, the following statements are e...
- To find an eigenvector corresponding to an eigenvalue , λ, we write. (...
- Actually, taking either of the eigenvalues is misleading, because yo...
- To find an eigenvector corresponding to an eigenvalue λ λ, we...